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ABSTRACT
(Distribution Limitation Statement B)

The heating of a solid body by a laser beam has been analyzed using a generalized
two-dimensfonal solution of the heat conduction equation for a finite right
circular cylinder. This series-eigenvalue solution includes time-dependent flux
boundary conditions and reradiation from all surfaces. Temperature solutiins are
derived for three spacial laser beam profiles applied to continuous wave, pulsed,
and repetitively pulsed laser heating. Computer programs developed to evaluate
these temperature solutions are presented.
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SECTION I
INTRODUCTION

The investigation of the effects of continuous, pulsed, and repetitively
pulsed lasers on materials has brought about a renewed effort to solve a partic-
ular class of heat flow problems. These problems vary greatly in complexity
depending on the thermal properties of the material of interest; the temporal
history of the laser flux; the spacial intensity profile of the laser beam; and
the shape, size, and optical properties of the body being irradiated. Few laser
heating problems can be consider:d steady state, and most are two- or three-
dimensional in nature.

Ready (Ref. 1) has compiled an excellent summary of heat transfer solutions
applicable primarily to pulsed laser heating problems. There are solutions for
two-dimensional radially symmetric heating by circular and Gaussian beam pro-
files as well as one-dimensional cases. Most of these have been solved for the
semi-infinite solid case because of the emphasis on pulsed laser heating,
although some solutions are presented for the finite thickness plate, including
surface losses from reradiation or convection. To obtain these concise analyt-
ical solutions, it was assumed that the heat flow obeys the classical heat
transfer equations with no phase changes occurring. Material thermal properties
are independent of temperature. Despite further assumptions about the temporal
shape of the laser pulse and small absorption depths at surface (excellent
assumption for metals), some of the solutions presented still require the
numerical evaluation of integrals.

Carslaw and Jaeger (Ref. 2) give a one-dimensional transient heat transfer
solution for a finite thickness plate with a prescribed flux entering one surface
and no heat flow across the other surface. Again, constant thermal properties
were assumed, and no phase changes are permitted. If absorption lengths for the
laser energy are assumed to be short, this solution can be used to model contin-
uous wave laser heating with the condition that the one-dimensional crit:~ia are
met. This requires that for a material of given thermal properties, the average
laser power be sufficiently high and the sample be sufficiently thin (Ref. 3).
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An additional one-dimensional heat transfer solution for a finite thickness
plate applicable to pulsed laser heating can be derived by (1) using the above
prescribed flux solution for the duration of the pulse, and (2) applying the
resulting temperature profile at the end of the pulse as an initial condition to
a finite thickness plate solution (Ref. 2) for any initial temperature profile
and both surfaces insulated. This second solution then describes the diffusion
away from the front surface of the heat deposited by the pulse. Again the same
criteria for one-dimensionality must be obeyed.

Since in most laser experiments the one-dimensional requirements are not met,
it is desirable to have a full transient two-dimensional heat transfer solution
to theoretically describe laser heating. N. Y, Olcer (Refs. 4,5) has derived
very general solutions of the appropriate heat conduction equation for the heat-
ing of a finite solid body of arbitrary shape, any initial temperature profile,
and time dependent surface conditions. In this work he has specialized the
solution to that for a finite right circular cylinder that retains the very
general time dependent boundary conditions which permit his results to be
applied with appropriate simplification to the laser heating problem.

It is the intent of this report to show how the work of Olcer can be simpli-
fied and yet be made to model laser heating in as general a way as possible.
Specific examples are then derived for heating with three different spacial
laser beam intensity profiles and for continuous wave, pulsed, and repetitively
pulsed lasers. The computer programs used to evaluate the solutions are
described, and two examples are given in the appendix.

Finally, the applications section outlines ways to use the existing programmed
solutions. It should be remembered that many other solutions for laser heating
problems can be derived from Olcer's basic solution in addition to the ones

presented here.
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SECTION I1I
APPLICATION OF OLCER'S GENERAL SOLUTION TO THE LASER HEATING PROBLEM

‘ 1. SIMPLIFICATION OF OLCER'S SOLUTION

The heat conduction equation
- ¥ in R
l ] ]
V.zT'(?".t') +Q.(;'.t')='l'—£'a_t-"t_)' tl >0 (])

for the heating of a finite isotropic, homogeneous solid body, R', of arbitrary
shape with constant thermal properties has been solved by N. Y. Olcer (Refs. 4,
5). The following general boundary conditions apply on the surfaces
$;(1=1,2,...,0) of the body R',

t'>0
) ed N ARV RPN r | (2)
. ("b?;‘* hy(F ))T (Fat') = fi(rat!) ¥ on s(1=1,2,...,0)
with an initial temperature distribution
T'(F',t') = F'(F') ¥ in R' and on Si; t' = 0 (3)

The terms of equations (1), (2), and (3) are defined as follows:
T'(r',t') = unsteady temperature distribution in the region R’

the Laplacian in r'-space

Vlz

Q'(r',t')

heat production per unit time per unit volume in R'

thermal conductivity

-~
L]

thermal diffusivity

A
"

position of a point in the region R'

-
"

t' = time
. q = number of surfaces S; bounding R’

heat entering surfaces S; per unit time per
o unit area

-'.
-dlo
/\
-
Q‘"
~
| ]
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h;(?') = a coefficient of heat transfer (radiation and
convection) from surfaces S;

n; = direction of the outward normal to surface S1

F'(¥') = prescribed initial temperature distribution

For the convenience of removing constants from equations (1) and (2) and
simplifying its solution, the following nondimensional parameters are defined:

fi(Fit) = a £ (F.t')/TK
hy(¥) = a hy(F')/K
Q(F,t) = a%Q' (F',t' /T K
¥=7/a
t = t'x/a®
T(F,t) = T'(F,t')/T,
F(F) = F'(F)/T, (4)

where a is a characteristic dimension of the body R' and To is some reference
temperature. Equations (1), (2), and (3) can now be written in dimensionless

form.

= 1+ affe) - TR 'f 't (5)
F.t) = F(P) f :noR and on S, i
4

phassninicniidotr i o i st i o O e I i e i b s i o e R i e e s
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where R, Si’ Nys and V2 in nondimensional ?—space correspond to the same
quantities or operations primed in ?'-space with dimensions. A1l further
discussion of solutions of the heat transfer equation in this report will be
in terms of dimensionless, unprimed quantities. In the numerical evaluation
of a solution equation (4) must be used first to translate input parameters
to dimensionless form, and second to return the calculated temperature field
to actual temperatures.

The solution to equations (5), (6), and (7) is from reference 5.
T = 3 Ay vyFlexp(-uit) 3 [[f vprecirdt
m >
R

+I exp(uit) fﬁffwm(?)o(ﬁr)di +g; ‘SU' ¥ (Ff (F,r)ds e (8)
i

where the eigenfunctions wm(?) and the non-negative eigenvalues u. are obtained
by solving the eigenvalue problem

(V2 + up?) ¥ (F) = 0 Fin R
(3%1_+ "1(7')) ¥y (r) = 0 Fon S;(1-1,2,...,q) (9)

and

%; 5 fgf ¥2(F)dR (10)

This solution has been specialized to the case of a right circular cylinder
of radius, a, and thickness, 2b, in cylindrical coordinates (Ref. 5). For the
application of this solution to the heating of a disc by a laser, it will be
assumed that the spacial intensity profile of the laser beam is symmetrical
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about its axis, and therefore, the temperature profile in the heated body also
has cylindrical symmetry. Dropping the angular dependence the nondimensional

coordinates required are

r=r'/a; z2=12"'/a
and
n = b/a

The heat flow equation to be solved and the necessary boundary and initial
conditions corresponding to equations (5), (6), and (7) are as follows.

2 2
B2, 13 4 33 Vr(p,z,t) + Q(r,z,t) = 0
ar: roar 32¢ ot

O<r<] |z] <n t>0 (M)
(. L, h:) T(r,z,t) = f,(r,t) *
O<rc<l Z= - t>0 .
(.3_ n hz) T(rz,t) = f,(r.t)

O<srcl Z=n t>0

(-g? + h,) T(r,z,t) = f,(z2,t)

r=1 Jzl<n t>0 (12)

T(r,z,t) = F(r,z)

0<rgl |z] <n  t=0 (13)

The solution of equations (11), (12), and (13) for the axisymmetric right
circular cylinder which corresponds to equation (8) 1is




T(r,z,t) = ; Z CnLk¢n(r)xk(z) exp [-(A;w"()t]
n

1 n t
: ff 6 (r)x, (2)F(r,2)rdrdz +f - [(x;wf()T]
0 n 0

1

B 1 n

g ff ¢, (r)x, (2)0(r,2,7) rdrdz +f ¢n(r)(f,(r,r) + xk(n)fz(r.r))rdr
0 -n 0

n

+/xk(z)f3(z,r)dz dt | (14)

=N

and the eigenvalue problem of equation (9) becomes

(ﬁ-;+-];%;+;-:-:-+uk:)xpkn(r,z)=o 0sr<l |zl <n
(--g—z-+hl)\pkn(r.z)=0 Osr<l zZ=-n
(-g-i+h2)wkn(r,z)=0 0O<r<l z=n
(-g-;s\ h'a) wkn(r,z) =0 r=1 |z| < n (15)

The eigenfunctions wkn(r,z) and the eigenvalues Men 2T double index sets where
k,n = 0,1,2,...», Where h,,h,,h, are constants, the solution to equation (15)

{s a product of two eigenfunctions
wk.n(r.z) ® ¢n(r)Xk(z) (16)

where the eigenfunction ¢n(r) is

0(r) = 3, (4r)13, () (17)



and xn is the nth non-negative root of
hsds () = An 91() (18)
The eigenfunction x,(z) is ‘
hy
X (2) = cos [vk(n+z)] + Wsin[\)k(mz)] (19)
and N is the kth non-negative root of

(h1+hz)\’k cos 2nv, = (vf(-hlhz) sin 2"“’k (20)

and the two eigenvalue sets are related by

o ™ Y+ @)
From equation (10)
1 2, p?
As +h
'(];-= f 02(r)rdr = — - (22)
n 2\
0 n
and
n 2.h2\,2402 1 2
1 S n(vp+hi)oiend) + 2-(h,+h,)(vk+h,h,) s
Lk Xk 2 (\)z,,,hz) bl
-n Vk V™2
= 2 forv, =0 (23)

The temperature expression of equation (14) and its attendant definitions
(equations (17), (18), (19), (20), (22), and (23)) are still much more general
than necessary to solve the laser heating problem. A few observations will
reduce equation (14) to a much more manageable size. First, in the typical
laser experiment there is initially no temperature profile in the body being
irradiated, so that integral containing the function F(r,z) can be dropped.

d--t--iﬁ-m-s-a-‘dn--u--—--:.m_n.. il delatiiabein Lo liBien kit o b s ik . a—



Second, by assuming that the material is a good absorber of laser energy, we
are irradiating only the front surface of the cylinder z = n with flux f,(r,1),
and therefore, f,(r,7) and f,(z,1) are both zero. The integral containing
Q(r,z,t) also vanishes because no heat is being generated in the bulk.* Third,
by assuming that the coefficients of combined reradiation and convection are
the same for all cylinder surfaces h,=h,=h,=h, equations (20) and (23) are
simplified slightly. We now rewrite equation (14) with its accompanying
definitions for the laser heating problem. :

[ -]

T(r,z.t) = Z E CnLk¢n(r)xk(z) exp[- (A;w;) t]

k n
1t |
g l/[ exp [(A;'F\)ﬁ)‘r] 05(r) x, (n)f, (ry7)rdrde (24)
" %
where
0(r) = 3y (Ar) /3,3 (25)

An is the nth non-negative root of

hao(xn) =, Jl(kn) (26)

xk(z) = CoS [vk(n+z)] + (h/vk)sin[vk(mz)] (27)
Vg is the kth non-negative root of

2hv, cos 2nv, = (vﬁ-hz)s1n 2y, (28)

*For dielectric materials with very long absorption lengths at the laser wave-
lenth of interest, the absorption of energy in the bulk could be handled by
retaining the heat generation term Q(r,z,t) and setting the three surface
fluxes f,(r,1), f,(r,7), and fy(z,7) to zero.
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C, = 2/ (X;-th) (29)
L, = vﬁ/[n(vﬁ+h2)+ h] vy to
= 1/2n v =0 (30)

The temperature expression summarized by equations (24) through (30) is
still a very general solution for the heating of a cylinder by a laser, because
the only requirement made is that the flux entering the front surface be radially
symmetric. The flux, represented by f,(r,7), is still a general function of
radius and time. It is desirable, of course, to choose beam intensity profiles
in time and space which when substituted into equation (24) permit a direct
analytical evaluation of the double integral in the braces { } because this
integration is inside of the double sum and must be performed nek times.

2. LASER BEAM SPACIAL INTENSITY PROFILES

The spacial integration of equation (24) has been evaluated for three laser
beam profiles: constant intensity, f;, of finite radius (cylindrical profile),
Gaussian, and parabolic. For the cylindrical profile,

f(r) = f, 0O<r' <o’
fi(r) =0 ' <r!

and the total beam power, P', is

P! = o' 2f, (31)

Normalizing the appropriate parameters the integral to be performed is

(32)

10 -

- s N—— P ]
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For the Gaussian profile

fy(r) = £, exp(-r'?/20'?) 0O<r' ga'

and

P' = 2ng'2f) (33)

With normalized parameters the required integral is

1
J{r r
f%l f, exp(-r?/20%)rdr
0 ‘Jo >‘n

This integration cannot be completed in closed form; however, an exact expres-
sion is available for the definite integral from zero to infinity.

~ V
/ 3,(8r)r**! exp(-y2r2)ar = -(2_‘;B)Wr exp(-82/4y?) (34)
A Y

As long as the effective radius of the beam is somewhat smaller than the sample
radius, the exponential part of the function to be integrated has decayed to
negligible values for r = 1, and thus, integrating to 1 is equivalent to
integrating to «=. Applying equation (34) for v = 0,

3, (A f,0°
f, exp(-r?/20%)rdr = ~0222/2 (35)
f Jo(’\n) o exp(-r?/20%)rdr Jo(kn) exp( o%A, )

0

For the parabolic profile
f(r) = £,00 - r'2/0'?) 0O<r' 2o
f;(r) =0 ag' <r'

and

P! = no'zf;/2 (36)

N
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The required integral is evaluated with an integration by parts

fo ——J°(A“r) f,(1 - r*/o*)rdr = —J—Zﬂ %3 e) (37)
0

s :
J°(An) )‘n Jo()‘n)
3. LASER BEAM TEMPORAL INTENSITY PROFILES

The temporal integration of equation (24) has been performed for three
different kinds of lasers, continuous wave (CW), pulsed, and repetitively
pulsed (REP). The REP solution works for a very general pulse shape as each
pulse is represented by a rising and a decaying exponential. Two types of
single pulse solutions are easily derived. The first, a simple square pulse
is a specialization of the CW solution, while the second is obtained directly
from the REP solution by setting the pulse frequency to a number sufficiently
small to allow only one pulse of energy during the times of interest.

For the CW laser beam
fo(t') = f, 0<t

and the time integration in equation (24) is just

t
/'exp [()‘”‘wf()r] f,dt = 2f°2 3exp [(A;w"()t] - 1$ (38)
0 An+vk

The single square pulse beam
f.(t') = f, 0O<t' <t
f;(t') =0 t;) <t

requires only a change of the upper limit of equation (38) to, tp. the normal-

ized pulse length. (38a)

A temperature solution is possible for the REP laser if it is assumed that
the pulses are all of identical energy, shape, and spacing in time. The follow-
ing general shape was chosen for a pulse.

RIS AR, =St S POl =l e W SR SR



rises  f3(t') = £, [l-exp(-t'/t'py)] 0<t <t
decay: f,(t') = f; exp[-(t'-t'pp)/t'pd] tF;P <t

Three time constants are required to describe each pulse: the rise time, tl.""
the time, t' , for the intensity to reach a maximum, f,, and the decay time,

[')d' The energy per unit area contained in this pulse is given by

Ener = £ |4 ' ' ' ' '
UTE'Ln T fo[ pp-torttogttop €XP ('tpp/tpr)] (39)

Thus, for the mth pulse in a series of pulses separated by a period, 6',
rise: f,(t') = f;[l-exp(- (t'-(m-1)e')/t6r)]

(m-1)8' < t' < (m=1)86 +tpp

decay: f,(t') = f, eXP['(t"(""")9"t£,p)/t;';d]

(m=-1)6' + tl')p <t'smo’

The time integral of equation (24) where t' is a time during the Mth pulse

t

f exp [(l;-l-v:)r]fz(‘r)dr
0

therefore, consists of first, a complete integration over pulses 1 through M-1,
and second, integration over the Mth pulse up to time t'. Substituting a
normalized form of f, (t') for pulses 1 through M-1 and for pulse M into the
time integral and letting the sum of the squares of the eigenvlaues, A;w"‘.

be represented by Enk one obtains




M-1 f

f exp( o )f,(t)dr = Z exp[ Eox ((m-'l)e- )] {Ei [exp( nktpp) l]

f,t
- ey [ [ ) ) - 1]
b
+ -En—:t-:ﬁ_-r exp (tpp/tpd) [exp I:(Enk-l/tp d)e]
Rh A [(Enk'”tpd)tpp]]} 0<tg (M1)8
either
+ E:_: [1 - exp[Enk((M-l)e-t)]]
) EE%%T [exp [((M—Ue-t)/tpr] - exp[Enk((M-Ue-t)]]
(M-1)8 < t < (M-1)8 + tpp
(a time during the rise of the Mth pulse)
or

+ exp[ ((M-l)e t)] {E-:-i- [exp(Enktpp)-l]

f.t

| e S WM A1

nk“pr

+Ef_:;&'r[e’(p [((M'])e+t )/t ] exp[Enk ((M-])e+tpp-t)]]

nk “pd

(M-1)8 + t__ <t <Mp
I PP
(a time during the decay of the Mth pulse)

(40)

14
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The first part of equation (40) containing 2; is easier to evaluate than
it appears at first because the index, m, and the variable, t, are contained
only in the first exponential term, and the argument is always negative. Since
REP Tasers to date operate in the order of hundreds of pulses per second or
less, M, the total number of pulses is never an unreasonably large number.
Furthermore the expression contained in the braces is just a double indexed .
set of constants to be evaluated once after the eigenvalues are found. The
choice of the appropriate second part of equation (40) is made directly from

the variable t.
As stated earlier, this solution can be used in the single pulse case by

entering a period, 6, which is always greater than t. Only the appropriate
second part of equation (40) is to be evaluated for M=1,
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SECTION III
THE PROGRAM

To obtain a solution to equation (24) one must consider sufficiently many
terms of the series to allow for convergence. In general, the number of terms
required for convergence is large enough to make any solution other than by a
high-speed computer impractical. The program which is described below and
appears in the appendix was written to provide an evaluation of equation (24).
This program was written in FORTRAN IV source language and is run on a CDC
6600. The following is a 1ist of symbols used in the program.

CAP K
CAND K

A L

D 2b

SIG o'

FL L

H h'

ELAM A

ENU v

p p

TPR tér

TPP tép

TPD 5d

EGN AtV Enk

The main program, called TMPC, initializes input data through the use of
data statements. The desired times of interest are generated prior to any call
to subroutines. In addition, one takes into consideration the relationship

16
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between peak intensity and power as described in equations (31), (33), and (36)
according to the particular spacial and temporal beam profile of interest.*

After these preliminary values have been determined, then a call is made to
INITL. This subroutine first computes the heat transfer coefficient H, and then
normalizes various constants. Finally, two calls to the subroutine ZERP are
made: one for the function TRANT, and one for the function TRANB.

Subroutine ZERP determines a preassigned number of roots to a desired
accuracy for a given function. The function TRANT evaluates equation (28) for
the particular value of v which is passed to 1t. Similarily, TRANB evaluates
equation (26) for different values of A. The number of vk's and An's calculated
is determined by NEGT and NEGB, respectively. It has been found that 2000 vk's
and 300 An's will normally produce a temperature accuracy within 3 x 10~*
degrees centigrade with the time required to calculate them, usually in the
range of a fraction of a second. If computer time becomes excessive these
numbers, in many cases, can be substantially decreased. The number of terms
actually needed is determined primarily by the magnitude of the temperature
gradient at the particular time of interest. For example, the number of An's
required for the cylindrical beam at short times is significantly greater than
the number required in the Gaussian case at the same times. After the vk‘s
and the An's have been calculated control is returned to the main program.

A call is then made to the function routine TMP which will compute the
temperature, as given in equation (24), for a particular radius, depth, and time.
In TMP a desired accuracy is set for the temperature calculation, usually
3 x 10~*, and the radius, depth, and time are normalized. The function then
begins to evaluate the first term of the double sum of equation (24) by setting
the indices k and n to 1. ARGA and ARGB are then calculated to be later used
as the arguments in the computation of ¢n as defined in equation (25). Next
a call is made to function routine SINT which does the spacial integration of
equation (24) for either a cylindrical profile (equation (32)), Gaussian profile
(equation (35)), or parabolic profile (equation (37)). The program next com-
putes the k,nth term of the double sum in the following order.

*There are two sample programs listed in the appendix: one for a CW laser with
a cylindrical beam profile, and another for a REP laser with a Gaussian beam

profile.

17
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First, the functional constant Cn’ evaluated in function routine C, is
determined as defined in equation (29). The next term is the functional con-
stant Lk’ evaluated in function routine SL, as defined in equation (30). The
previously determined arguments, ARGA and ARGB, are used in the computation of
the eigenfunction, ¢n. The following two terms of the product are X functions
found in equation (26) and evaluated in the function routine CHI.

The product of the temporal integration and the time dependent exponential
term of equation (24) computed in function routine TFACT, comprises the next
term of the product. The temporal integration will be given by either equation
(38), (38a), or (40) according to whether the laser beam is CW, single pulse,
or multiple pulse. Here "a" denotes a change in the upper limit of equation
(38) to tp. The final factor is the result of the spacial integration pre-
viously computed. The program will continue to run through this double sum
until either the specified accuracy is achieved or the number of eigenvalues
requested is exceeded. Once one of those conditions has been met, in the latter
case an error message will be printed, then control is returned to the main
program. Repeated calls to TMP will produce the desired temperatures and all
that remains is the output of this information.

A typical output from this program might include thermal properties of the
substance under consideration, dimensions of the sample, beam parameters, and
the respective times and temperatures at specified locations.

The program usually will compute 10 temperatures on a CDC 6600 in about
1 or 2 seconds.
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CECTION IV
APPLICATIONS

1. DIRECT CALCULATION OF TEMPERATURES

Direct calculation of temperature time histories at any number of 1ocat10ns‘
or temperature profiles at any times are possible with a minimum expenditure of
computer time. Because this is a series analytical solution it is necessary to
calculate only the temperatures at the locations and times desired, rather than
generate the whole temperature field at every time step up to the time of
interest as done in finite element or finite difference computer solutions.
This analytical solution is particularly useful for calculating heat flow in a
variety of laser effects experiments. Temperature rises can be estimated for
two-dimensional CW, pulsed, and REP lasers. The effect of temporal pulse shape
on the temperature history can be investigated in detail, and in the case of
REP lasers, the amount of radial and axial "recovery cooling" of the irradiated
area occurring between pulses can also be calculated.

In addition to the investigation of various time parameters characterizing
the laser flux, the importance of the laser beam's spacial profile can also be
studied. For a laser beam of a given total power, the beam size parameter, o,
and peak intensity, f,, can be varied to determine the effects of focusing or
defocusing the laser beam on the temperature profiles in a sample. Also tem-
perature fields created by the different beam spacial profiles can be compared,
at least for the cylindrical, Gaussian, and parabolic profiles derived here.
Certainly other mathematical functions can be chosen to represent the beam
profile of interest. With several possible functions to try, one can compare
the resulting temperature field and determine quantitatively how important is
the precise representation of the laser beam profile to the predicted form of

‘the temperature field.
2. DETERMINATION OF SURFACE ABSORPTION COEFFICIENTS

In the study of the effects of laser beams on materials it is nearly always
desirable to know what fraction of the incoming laser beam is being absorbed by
the sample. This surface absorption coefficient can be obtained from experi-
mental temperature time h1stqries with the aid of this heat transfer solution.
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For example, temperature data from thermocouples attached to a laser irradiated
sample can be fit by a method of "least squares" with the mathematical form of
the temperature rise predicted by the two-dimensional p-ogram. Knowing the
actual beam power, the program can output what fraction of that power the

sample must have absorbed.

This data fitting technique permits one to obtain surface absorption coeffi-
cients for the wide range of laser effects experiments where the assumption of
one-dimensional heat flow cannot be made. In fact the amount of radial heat
losses in most laser experiments is considerable, and if not accounted for
properly can result in enormous errors in experimental absorptfon coefficients.

3. OTHER APPLICATIONS

Because of the remarkably general nature of this two-dimensional heat
transfer solution as expressed in equation (14), one can envision a variety of
other applications. Rather than assuming surface heating, the laser energy
could be absorbed over finite depths in the sample through the use of the heat
generation integral. More sophisticated solutions might then be developed |
which would model the heating of materials semitransparent to laser radfation

such as lenses, windows, etc.
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APPENDIX I

CONTINUOUS WAVE LASER,
CYLINDRICAL BEAM PROFILE
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APPENDIX II

REPETITIVELY PULSED LASER,
GAUSSIAN BEAM PROFILE
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